On the spinup and spreadout of a Cartesian gravity current on a slope in a rotating system

Author:

Ungarish M.ORCID

Abstract

Ocean gravity currents flow along the inclined ocean floor for long times compared to the planet's rotation period. Their shape and motion is governed by the gravity buoyancy, Coriolis acceleration and friction-induced Ekman-layer spinup circulation. In order to understand this process, we consider the flow of a dense-fluid Boussinesq gravity current of fixed volume over an inclined bottom in a rotating system, in the framework of Cartesian 2.5-dimensional geometry (no dependency on the lateral direction $y$ , but with a non-trivial $y$ -component velocity $v$ due to Coriolis coupling with the main $u$ along the bottom $x$ ). After release from rest in a lock (co-rotating, with two gates creating propagation in ${\pm }x$ -directions), the current forms a quasi-steady geostrophic ‘vein’ of parabolic height profile with a significant lateral velocity $v$ . Subsequently, a spinup process, driven by the Ekman layers on the bottom and interface, appears and prevails for many revolutions, during which $v$ decays and the shape of the interface changes dramatically. We investigate the spinup motion, using an approximate model, for the case of large Rossby number, small Ekman number and small slope $\gamma$ (relevant to oceanic currents). We show that the initial shape of the natural geostrophic vein can be calculated rigorously (not an arbitrary parabola), and the initial lateral velocity $v(x,t=0)$ is counter-rotation about a fixed point (pivot) $x_{\rm \pi}$ at which $v(x_{\rm \pi},t) =0$ (at the beginning and during spinup). This point is placed excentrically, in the upper part, and this excentre, $\propto \gamma$ , plays a significant role in the process. The spinup in a rigid container is developed as the prototype process; an essential component is the edge (outer wall) where the flux of the Ekman layer is arrested (and then returned to the centre via the inviscid core). While the upper part of the vein adopts this spinup pattern, the lower part (most of the vein, $x< x_{\rm \pi}$ ) develops a leak (drainage) at the edge that (a) modifies the spinup of the vein, and (b) generates a thin tail extension downslope. The tail consists of two merged non-divergent Ekman layers, which chokes the drainage flow rate. The present model provides clear-cut insights and some quantitative predictions of the major spinup stage by analytical algebraic solutions. A comparison with a previously published simple model (Wirth, Ocean Dyn., vol. 59, 2009, pp. 551–563) is presented. We also discuss briefly stability of the initial vein.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3