An experimental investigation of turbulent free-surface flows over a steep permeable bed

Author:

Rousseau G.ORCID,Ancey C.

Abstract

Steep streams involve shallow, supercritical turbulent flows over a permeable bed made up of coarse particles. They usually exhibit higher flow resistance and stronger mass and momentum exchanges between the stream and subsurface flow than low-gradient streams. Describing their flow dynamics using generalised Manning–Strickler equations has led to empirical relationships with weak predictive power (errors between predictions and data of over one order of magnitude). We studied shallow turbulent flows by employing a mesoscopic approach based on the double-averaged Navier–Stokes equations. More specifically, we were concerned with the possibility of modelling the turbulent and dispersive shear stress equations using simple algebraic equations. To that end, we studied shallow, supercritical turbulent flows over a sloping bed made up of randomly packed spherical particles. Using visualisation techniques based on particle velocimetry imaging and refractive index matched scanning, we were able to reconstruct the velocity field throughout the bed and stream, far from the sidewalls, and estimate the contributions of the dispersive and turbulent shear stresses to the total shear stress. The dispersive shear stress represented less than 20 % of the turbulent shear stress, but because it was concentrated within a thin layer (called the roughness layer) where it outweighed the turbulent shear stress, it had a significant influence on the mean velocity profile. We proposed an algebraic closure equation for dispersive shear stress, based on the mixing-length model used for turbulent shear stress, and we found that it captured closely the mean-velocity and turbulence-intensity profiles of shallow flows over horizontal or sloping permeable beds. Our data suggest that flow dynamics was affected largely by turbulence damping, drag forces and dispersion within the roughness layer, which may explain why steep streams differ from low-gradient streams.

Funder

École Polytechnique Fédérale de Lausanne

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3