Fingering instability in wildfire fronts

Author:

Harris S.J.ORCID,McDonald N.R.ORCID

Abstract

A two-dimensional model for the evolution of the fire line – the interface between burned and unburned regions of a wildfire – is formulated. The fire line normal velocity has three contributions: (i) a constant rate of spread representing convection and radiation effects; (ii) a curvature term that smooths the fire line; and (iii) a Stefan-like term in the direction of the oxygen gradient. While the first two effects are geometrical, (iii) is dynamical and requires the solution of the steady advection–diffusion equation for oxygen, with advection owing to a self-induced ‘fire wind’, modelled by the gradient of a harmonic potential field. The conformal invariance of this coupled pair of partial differential equations, which has the Péclet number $\textit {Pe}$ as its only parameter, is exploited to compute numerically the evolution of both radial and infinitely long periodic fire lines. A linear stability analysis shows that fire line instability is possible, dependent on the ratio of curvature to oxygen effects. Unstable fire lines develop finger-like protrusions into the unburned region; the geometry of these fingers is varied and depends on the relative magnitudes of (i)–(iii). It is argued that for radial fires, the fire wind strength scales with the fire's effective radius, meaning that $\textit {Pe}$ increases in time, so all fire lines eventually become unstable. For periodic fire lines, $\textit {Pe}$ remains constant, so fire line stability is possible. The results of this study provide a possible explanation for the formation of fire fingers observed in wildfires.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Simple but Effective Bushfire Model: Analysis and Real-Time Simulations;SIAM Journal on Applied Mathematics;2024-07-15

2. Exact and numerical solutions of a free boundary problem with a reciprocal growth law;IMA Journal of Applied Mathematics;2024-04

3. Penguin Huddling: A Continuum Model;Acta Applicandae Mathematicae;2023-06

4. Dissolution of plane surfaces by sources in potential flow;Physica D: Nonlinear Phenomena;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3