On coherent vortical structures in wave breaking

Author:

Di Giorgio SimoneORCID,Pirozzoli SergioORCID,Iafrati AlessandroORCID

Abstract

The flow generated by the breaking of free-surface waves in a periodic domain is simulated numerically with a gas–liquid Navier–Stokes solver. The solver relies on the volume-of-fluid method to account for different phases, and the interface tracking is carried out by using novel schemes based on a tailored total-variation-diminishing limiter. The numerical solver is proved to be characterized by a low numerical dissipation, thanks to the use of a scheme that guarantees energy conservation in the discrete form. Both two- and three-dimensional simulations have been performed, and the analysis is presented in terms of energy dissipation, air entrainment, bubble fragmentation, statistics and distribution. Particular attention is paid to the analysis of the mechanisms of viscous dissipation. To this purpose, coherent vortical structures, such as vortex tubes and vortex sheets, are identified, and the different behaviours of the vortex sheets and tubes at various Reynolds numbers are highlighted. The correlation between vortical structures and energy dissipation demonstrates clearly their close link both in the mixing zone and in the pure water domain, where the coherent structures propagate as a consequence of the downward transport. Notably, it is found that the dissipation is identified primarily by the vortex sheets, whereas the vortex tubes govern mainly the intermittency.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3