Theoretical analysis for bedload particle deposition and hop statistics

Author:

Wu ZiORCID,Jiang WeiquanORCID,Zeng LiORCID,Fu XudongORCID

Abstract

Understanding the statistics of bedload particle motions is of great importance. To model the hop events which are defined as trajectories of particles moving successively from the start to the end of their motions, recently, Wu et al. (Water Resour. Res., vol. 56, 2020, p. e2019WR025116) have successfully performed individual-based simulations according to the Fokker–Planck equation for particle velocities. However, analytical solutions are still not available due to (i) difficulties in treating the velocity-dependent diffusivity, and (ii) a knowledge gap in incorporating the termination of particle motions for the equation. To tackle the above-mentioned challenges, we first specify a Robin boundary condition representing the deposition of particles. Second, for analytical solutions of hop statistics, a variable transformation is devised to deal with the velocity-dependent diffusivity. The original bedload transport problem is thus found to be governed by the classic equation for the solute transport in tube flows with a constant diffusivity after the transformation. Finally, through solving the spatial and temporal moments of the governing equation, we investigate the influence of the deposition rate on three key characteristics of particle hops. Importantly, we have related the deposition rate to the mean travel times and hop distances, enabling a direct determination of this physical parameter based on measured particle motion statistics. The analytical solutions are validated by experimental observations with different bedload particle diameters and transport conditions. Based on the limited experimental datasets, the deposition frequency is shown to decrease as the shear stress increases when the flow rate is not small.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference56 articles.

1. On the dispersion of a solute in a fluid flowing through a tube;Aris;Proc. R. Soc. Lond. Math. Phys. Engng Sci.,1956

2. Einstein, H.A. 1950 The bed-load function for sediment transportation in open channel flows. Tech. Rep. 1026. United States Department of Agriculture.

3. Gyrotactic trapping of micro-swimmers in simple shear flows: a study directly from the fundamental Smoluchowski equation

4. Analyzing and modeling sub-diffusive transport of bedload along a heterogeneous gravel bed using stochastic and statistical methods

5. Influence of the time interval on image-based measurement of bed-load transport

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3