Computational modelling of Leidenfrost drops

Author:

Chakraborty IndrajitORCID,Chubynsky Mykyta V.,Sprittles James E.ORCID

Abstract

The Leidenfrost effect, where a drop levitates on a vapour film above a hot solid, is simulated using an efficient computational model that captures the internal flow within the droplet, models the vapour flow in a lubrication framework and is capable of resolving the dynamics of the process. The initial focus is on quasi-static droplets and the associated geometry of the vapour film formed beneath the drop, where we are able to compare with experimental analyses and assess the range of validity of the theoretical model developed in Sobac et al. (Phys. Rev. E, vol. 103, 2021, 039901). The computational model also allows us to explore parameter space, varying both the drop size and viscosity of the liquid, with computational results in excellent agreement with the theoretical model for high-viscosity liquids. Interestingly, for large water drops, discrepancies between the computational model and experiments occur, and possible reasons for this observation are provided. Our predictions reveal features including a regime with a dimpleless bottom surface of the drop and a minimum in the vapour layer thickness as a function of the drop size. Finally, the capability to simulate dynamics is revealed by computations that predict and track the vapour ‘chimney’ instability for large drops.

Funder

Scheme for Promotion of Academic and Research Collaboration

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference39 articles.

1. The leidenfrost phenomenon: film boiling of liquid droplets on a flat plate

2. Star-drops formed by periodic excitation and on an air cushion – A short review

3. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

4. Computational modeling of quasistatic Leidenfrost drops;Chakraborty;Bull. Am. Phys. Soc.,2020

5. On the collision of a droplet with a solid surface;Chandra;Proc. R. Soc. Lond.,1991

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3