Molecular kinetic modelling of nanoscale slip flow using a continuum approach

Author:

Shan BaochaoORCID,Wang PengORCID,Wang RunxiORCID,Zhang YonghaoORCID,Guo ZhaoliORCID

Abstract

One major challenge for a continuum model to describe nanoscale confined fluid flows is the lack of a boundary condition that can capture molecular-scale slip behaviours. In this work, we propose a molecular-kinetic boundary condition to model the fluid–surface and fluid–fluid molecular interactions using the Lennard–Jones type potentials, and add a mean-field force to the momentum equation. This new boundary condition is then applied to investigate the nanoscale Couette and Poiseuille flows using the generalised hydrodynamic model developed by Guo et al. (Phys. Fluids, volume 18, issue 6, 2006a, 067107). The accuracy of our model is validated by molecular dynamics simulations and other models for a broad range of parameters including density, shear rate, wettability and channel width. Our simulation results reveal some unexpected and unintuitive slip behaviours at the nanoscale, including the epitaxial layering structure of fluids and the slip length minimum. The slip length minimum, which is analogous to the Knudsen minimum, can be explained by competing fluid–solid and fluid–fluid molecular interactions as density varies. A new scaling law is proposed for the slip length to account for not only the competing effect between the fluid–solid and fluid–fluid molecular interactions, but also many other physical mechanisms including the competition between the fluid internal potential energy and kinetic energy, and the confinement effect. While the slip length is nearly constant at the low shear rates, it increases rapidly at the high shear rates due to friction reduction. These molecular-scale slip behaviours are caused by energy corrugations at the fluid–solid interface where strong fluid–solid and fluid–fluid molecular interactions interplay.

Funder

Engineering and Physical Sciences Research Council

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3