Abstract
The effect of hydrodynamic interactions on the collective locomotion of fish schools is still poorly understood. In this paper, the flow-mediated organization of two tandem flapping foils, which are free in both the longitudinal and lateral directions, is numerically studied. It is found that the tandem formation is unstable for two foils when they can self-propel in both the longitudinal and lateral directions. Three types of resultant regular formations are observed, i.e. semi-tandem formation, staggered formation and transitional formation. Which type of regular formation occurs depends on the flapping parameters and the initial longitudinal distance between the two foils. Moreover, there is a threshold value of the cycle-averaged longitudinal distance (which is approximately 0.55) below which both velocity enhancement and efficiency augmentation can be achieved by two foils in regular formations. The results obtained here may shed some light on understanding the emergence of regular formations of fish schools.
Funder
National Natural Science Foundation of China
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献