On the flow-acoustic coupling of fan blades with over-the-rotor liner

Author:

Sun YuORCID,Wang XiaoyuORCID,Du Lin,Sun Xiaofeng

Abstract

Over-the-rotor liner exhibits the potential to further attenuate turbofan noise, but the physics involved remain to be explored. In this paper, a three-dimensional coupled singularity method is proposed to investigate the flow-acoustic coupling effects of axially overlapping annular rotor and finite-length liner in subsonic flow. The formulation adopts the orthogonal basis expansion of the generated disturbances in terms of the hard-walled duct modes. The sound scatterings at the rotor and the liner are then characterized, respectively, by the underdetermined dipole and monopole distributions. We derive a simultaneous solution to the coupled unsteady rotor and liner responses, which ensures that the resultant perturbed field satisfies both the impermeable boundary condition on the blade surfaces and the impedance boundary condition on the lined wall. The effect of a perforated porous-material liner on the wake–rotor interaction tones is investigated. The analysis reveals that for the sound field of varying mode and frequency characteristics, moving the inlet liner to the over-the-rotor location generally leads to limited loss or even an increase of upstream sound absorption, along with additional acoustic benefits in the aft duct. The flow-acoustic coupling between the axially overlapping rotor and liner is shown to alleviate significantly the unsteady blade loading and meanwhile intensify the fluid particle oscillation through the acoustically treated wall. Sound source reduction and sound dissipation enhancement are thus identified as the governing noise attenuation mechanisms. Finally, we extend the analysis to provide insights into the effectiveness of over-the-rotor acoustic treatment with shortened axial length.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference53 articles.

1. A new model for the prediction of turbofan noise with the effect of locally and non-locally reacting liners

2. Low-Speed Fan Noise Attenuation from a Foam-Metal Liner

3. Watanabe, T. & Kaji, S. 1984 Possibility of cascade flutter suppression by use of non-rigid duct wall. In Proceeding of the Third International Symposium on Aeroelasticity in Turbomachinery (ed. D.S. Whitehead), pp. 261–276. Cambridge University Press.

4. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

5. Impedance modelling of acoustically treated circumferential grooves for over-tip-rotor fan noise suppression

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3