On the receptivity of low-pressure turbine blades to external disturbances

Author:

Lengani D.ORCID,Simoni D.ORCID,Pralits J.O.ORCID,Đurović K.ORCID,De Vincentiis L.ORCID,Henningson D.S.ORCID,Hanifi A.ORCID

Abstract

In the present work, the laminar–turbulent transition of the flow evolving around a low-pressure turbine blade has been investigated. Direct numerical simulations have been carried out for two different free stream turbulence intensity (FSTI) levels to investigate the role of free stream oscillations on the evolution of the blade boundary layer. Emphasis is placed on identifying the mechanisms driving the formation and breakup of coherent structures in the high FSTI case and how these processes are affected by the leading-edge receptivity and/or by the continuous forcing in the blade passage. Proper orthogonal decomposition (POD) has been adopted to provide a clear statistical representation of the shape of the structures. Extended POD projections provided temporal and spanwise correlations that allowed us to identify dominant temporal structures and spanwise wavelengths in the transition process. The extended POD analysis shows that the structures on the pressure side are not related to what happens at the leading edge. The results on the suction side show that the modes defining the leading edge and the passage bases correlate with coherent structures responsible for the transition. The most energetic mode of the passage basis is strongly related to the most amplified wavelength in the boundary layer and breakup events leading to transition. Modes with a smaller spanwise wavelength belong to the band predicted by optimal disturbance theory, they amplify with a smaller gain in the rear suction side, and they show the highest degree of correlation between the passage region and the rear suction side.

Funder

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3