Dynamic stall at high Reynolds numbers induced by ramp-type pitching motions

Author:

Kiefer JanikORCID,Brunner Claudia E.ORCID,Hansen Martin O.L.ORCID,Hultmark MarcusORCID

Abstract

The transient pressure field around a moderately thick airfoil is studied as it undergoes ramp-type pitching motions at high Reynolds numbers and low Mach numbers. A unique set of laboratory experiments were performed in a high-pressure wind tunnel to investigate dynamic stall at chord Reynolds numbers in the range of $0.5\times 10^6\leq Re _c\leq 5.5\times 10^6$ in the absence of compressibility effects. In addition to variations of mean angle and amplitude, pitching manoeuvres at reduced frequencies in the range of $0.01\leq k\leq 0.40$ were studied by means of surface-pressure measurements. Independently of the parameter variations, all test cases exhibit a nearly identical stall behaviour characterized by a gradual trailing-edge stall, in which the dynamic stall vortex forms approximately at mid-chord. The location of the pitching window with respect to the Reynolds-number-dependent static stall angle is found to define the temporal development of the stall process. The time until stall onset is characterized by a power law, where a small excess of the static stall angle results in a drastically prolonged stall delay. The reduced frequency exhibits a decrease in impact on the stall development in the case of angle-limited pitching manoeuvres. Beyond a critical reduced frequency, both load magnitudes and vortex evolution become reduced frequency independent and instead depend on the geometry of the motion and the convective time scale, respectively. Overall, the characteristics of vortex evolution induced by dynamic stall show remarkable similarities to the framework of optimal vortex formation reported in Gharib et al. (J. Fluid Mech., vol. 360, 1998, pp. 121–140). The data from this study are publicly available at https://doi.org/10.34770/b3vq-sw14.

Funder

Otto Mønsteds Fond

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference38 articles.

1. Galbraith, R.A.M.C.D. , Niven, A.J. & Seto, L.Y. 1986 On the duration of low speed dynamic stall. In 15th Congress of the International Council of the Aeronautical Sciences, pp. 522–531. ICAS Proceedings.

2. Unsteady laminar separation: an experimental study

3. McAlister, K.W. , Carr, L.W. & McCroskey, W.J. 1978 Dynamic Stall Experiments on the NACA0012 airfoil. NASA Tech. Rep. TP 1100.

4. Optimal Vortex Formation as a Unifying Principle in Biological Propulsion

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3