Onset of instabilities in rotating flows by direct numerical simulation

Author:

Liu ZiyaoORCID,Ladd Anthony J.C.ORCID

Abstract

A rotating disk is the canonical experiment for measuring surface reaction rates in geochemical and electrochemical systems. Using the similarity solution for laminar flow around an infinite disk, the mass transfer coefficient can be simply related to the intrinsic reaction rate at the surface. However, measurements of mass transfer rates use a finite-size disk within a larger container of solution; here the flow is no longer strictly laminar, but there must always be some recirculation. Our interest was initially in the assumption of a uniform radial concentration field, how this breaks down near the perimeter of the disk, and what effect that might have on the measured mass transfer rates. However, our numerical simulations suggest that the flow around a finite-size disk becomes time dependent at Reynolds number ( $Re$ ) below 1000, which is much smaller than the typical values in mass-transfer measurements ( ${Re} \sim 10^4$ ). We observe the formation of coherent structures in the flow, which suggest a non-uniform mass transfer at the disk surface. The rotating-disk flow follows a similar sequence of instabilities to the Taylor–Couette flow: a centrifugal instability leading an axisymmetric, time-invariant flow, followed by a Hopf bifurcation to a time-periodic flow. To minimise the possibility that our results are a numerical artefact, we have also simulated the instability in the stationary boundary layer of a rotor–stator flow, comparing with self-similar solutions at low ${Re}$ and with spectral methods near the critical Reynolds number.

Funder

U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3