Asymptotic theory of a flapping wing of a circular cross-section

Author:

Nuriev Artem N.ORCID,Egorov Andrey G.

Abstract

The paper is devoted to the study of the propulsive motion of a flapping wing of a circular cross-section performing translational–rotational oscillations in a viscous incompressible fluid. To describe the flow past the wing, the unsteady Navier–Stokes equation is solved. Using the method of asymptotic expansions for the case of small amplitudes of oscillations, an analytical solution of the problem is constructed in the first two terms. It is shown that the nonlinear interaction of time harmonics of translational and rotational oscillations causes secondary flows (steady streaming) that make the wing move in the direction perpendicular to the axis of translational oscillations. For the case of cruising motion, when the average hydrodynamic force acting on the wing is equal to zero, the dependence of the average speed on the dimensionless oscillation parameters is found. The results show that for relatively large angles of rotation the cruising speed of a flapping wing can be as high as the velocity amplitude of translational oscillations. The limits of applicability of the asymptotic theory are investigated using direct numerical simulations. Numerical data demonstrate that the theory well describes the flow past the wing in a wide range of dimensionless amplitudes, frequencies and angles of rotation. In conclusion, the efficiency of the propulsion system is evaluated. It is shown that in terms of relative energy consumption, a cylindrical flapping wing can be attributed to the most efficient propulsors in the range of Reynolds numbers $Re \sim 10^2\text {--}10^3$ .

Funder

Kazan Federal University Strategic Academic Leadership Program

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3