Charge–velocity correlation transport equations in gas–solid flow with triboelectric effects

Author:

Montilla CarlosORCID,Ansart RenaudORCID,Simonin OlivierORCID

Abstract

This paper is dedicated to the development of particle charge and velocity second-order moment transport equations for monodisperse particles in gas flow with a tribocharging effect. The full transport equations for the particle charge–velocity covariance and the charge variance are derived in the framework of the kinetic theory of granular flow assuming that the electrostatic interaction does not modify the collision dynamics. The collision integrals are solved without presuming the form of the electric part for the particle probability density function. The full second-order transport equation model is tested in a one-dimensional periodic domain. The results show that this model is able to capture more important physical mechanisms that are neglected by simple algebraic models proposed in the past. An in-depth analysis of the transport equations is also performed. This study reveals that, for sufficiently small covariance characteristic destruction time scales, the transient and third-order moments terms can be safely neglected. In addition, two different reduced-order models are proposed: a more general algebraic model that takes into account the variance effect and a semi-algebraic model that only resolves a transport equation for the charge variance coupled with an algebraic model for the covariance. The former could, however, lead to non-physical predictions in many cases, while the latter can be a suitable alternative only for a sufficiently small interparticle collision time. Finally, a simple chart based on test case simulations is proposed to show under which conditions a semi-algebraic model could be considered as a suitable alternative.

Funder

Agence Nationale de la Recherche

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3