Abstract
The impact of Strouhal number St (= 0.1–1.0), Reynolds number Re (= 50–2000) and dimensionless wavelength λ (= 0.5–2.0) on the hydrodynamic performance of a travelling wavy foil of a constant length is extensively investigated. The relationship of time-mean thrust with St, Re and λ is presented, suggesting that the propulsive force increases with increasing St, Re and λ. As such, the drag–thrust boundary advances as these parameters increase. A shorter λ makes the thrust steadier while a longer λ enhances the maximum instantaneous thrust. The latter is beneficial for prey to escape from a predator. The fluid added mass caused by the foil oscillation increases with St and λ but declines with Re (<500). Seven types of wake structures produced by the foil are identified, discussed and connected to thrust generation, showing how St, Re and λ affect the fluid dynamics, wake transition, vortex strength, wake jet, velocity, added mass, added damping, power input, efficiency and pressure profiles. The outcome of this work renders a physical basis for understanding the swimming of aquatic animals.
Funder
Research Grant Council of Shenzhen Government
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献