Reduced modelling and global instability of finite-Reynolds-number flow in compliant rectangular channels

Author:

Wang XiaojiaORCID,Christov Ivan C.ORCID

Abstract

Experiments have shown that flow in compliant microchannels can become unstable at a much lower Reynolds number than the corresponding flow in a rigid conduit. Therefore, it has been suggested that the wall's elastic compliance can be exploited towards new modalities of microscale mixing. While previous studies mainly focused on the local instability induced by the fluid–structure interactions (FSIs) in the system, we derive a one-dimensional (1-D) model to study the FSI's effect on the global instability. The proposed 1-D FSI model is tailored to long, shallow rectangular microchannels with a deformable top wall, similar to the experiments. Going beyond the usual lubrication flows analysed in these geometries, we include finite fluid inertia and couple the reduced flow equations to a novel reduced 1-D wall deformation equation. Although a quantitative comparison with previous experiments is difficult, the behaviours of the proposed model show, qualitatively, agreement with the experimental observations, and capture several key effects. Specifically, we find the critical conditions under which the inflated base state of the 1-D FSI model is linearly unstable to infinitesimal perturbations. The critical Reynolds numbers predicted are in agreement with experimental observations. The unstable modes are highly oscillatory, with frequencies close to the natural frequency of the wall, suggesting that the observed instabilities are resonance phenomena. Furthermore, during the start-up from an undeformed initial state, self-sustained oscillations can be triggered by FSI. Our modelling framework can be applied to other microfluidic systems with similar geometric scale separation under different operating conditions.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference71 articles.

1. Flow-induced deformation of shallow microfluidic channels

2. Spectral Methods

3. Self-excited oscillations in a collapsible channel with applications to retinal venous pulsation;Stewart;ANZIAM J.,2019

4. Reduced models of unidirectional flows in compliant rectangular ducts at finite Reynolds number

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3