Development and interaction of vortices over a very low aspect-ratio wing under pitch-up motion

Author:

Dong Lei,Choi Kwing-SoORCID,Mao XueruiORCID,Wang Yaxing

Abstract

The vortical structures over a thin rectangular wing with a very low aspect ratio of 0.277 were investigated in a wind tunnel at an effective Reynolds number of $3 \times 10^6$ . When applying pitch-up motion pivoted at mid-chord, the maximum lift angle was increased with an increase in the pitch rate, but the maximum lift coefficient was reduced. The pitching motion also caused delay in the vortical development over the wing, which was increased with an increase in the pitch rate. The delay in the leading-edge vortex development due to the pitching motion was nearly identical to that in the tip vortex development, indicating that the dynamics of the leading-edge vortex was strongly influenced by the tip vortex. This was confirmed by particle image velocimetry measurements, which demonstrated that the tip vortex over a very low aspect-ratio wing induced strong downwash to influence the development of the leading-edge vortex during the pitching motion, which led to a delay in flow separation.

Funder

China Scholarship Council

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3