Abstract
The vortical structures over a thin rectangular wing with a very low aspect ratio of 0.277 were investigated in a wind tunnel at an effective Reynolds number of
$3 \times 10^6$
. When applying pitch-up motion pivoted at mid-chord, the maximum lift angle was increased with an increase in the pitch rate, but the maximum lift coefficient was reduced. The pitching motion also caused delay in the vortical development over the wing, which was increased with an increase in the pitch rate. The delay in the leading-edge vortex development due to the pitching motion was nearly identical to that in the tip vortex development, indicating that the dynamics of the leading-edge vortex was strongly influenced by the tip vortex. This was confirmed by particle image velocimetry measurements, which demonstrated that the tip vortex over a very low aspect-ratio wing induced strong downwash to influence the development of the leading-edge vortex during the pitching motion, which led to a delay in flow separation.
Funder
China Scholarship Council
Engineering and Physical Sciences Research Council
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献