Interactions between upstream-propagating guided jet waves and shear-layer instability waves near the nozzle of subsonic and nearly ideally expanded supersonic free jets with laminar boundary layers

Author:

Bogey ChristopheORCID

Abstract

The interactions between upstream-propagating guided jet waves and shear-layer instability waves near the nozzle of subsonic and nearly ideally expanded supersonic, isothermal free jets are investigated for jets at Mach numbers between 0.50 and 2 with fully laminar exit boundary layers of different thicknesses. The velocity spectra in the shear layers downstream of the nozzle exhibit strong narrow peaks for the first azimuthal modes, associated with growing Kelvin–Helmholtz instability waves. The frequencies of the predominant peaks are close, but not necessarily equal, to those of the most amplified instability waves predicted from the mean flow fields using linear stability analysis. They also fall in most cases within or very near the allowable frequency bands of the free-stream upstream-propagating guided jet waves obtained using a vortex-sheet model and jump from one band to another as the Mach number increases. At these frequencies, moreover, high levels organized into elongated stripes are found in the jet potential core and standing-wave patterns are visible at the edges of the shear layers in the power spectral densities of pressure and velocity fluctuations. Therefore, the free-stream upstream-propagating guided jet waves appear to interact with and excite the instability waves near the nozzle of the present jets, as in screeching and impinging jets. This explains the disparities of the frequencies and azimuthal modes of the instability waves dominating early on in the shear layers of initially laminar jets and their discontinuous changes and staging behaviours as the jet velocity varies.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3