Reflection and transmission of a Kelvin–Helmholtz wave incident on a shock in a jet

Author:

Mancinelli MatteoORCID,Martini EduardoORCID,Jaunet VincentORCID,Jordan PeterORCID,Towne AaronORCID,Gervais Yves

Abstract

Screech tones in supersonic jets are underpinned by resonance between downstream-travelling Kelvin–Helmholtz waves and upstream-travelling acoustic waves. Specifically, recent works suggest that the relevant acoustic waves are guided within the jet and are described by a discrete mode of the linearised Euler equations. However, the reflection mechanism that converts downstream-travelling waves into upstream-travelling waves, and vice versa, has not been thoroughly addressed, leading to missing physics within most resonance models. In this work, we investigate the reflection and transmission of waves generated by the interaction between a Kelvin–Helmholtz wave and a normal shock in an under-expanded jet using a mode-matching approach. Both vortex-sheet and finite-thickness shear-layer models are explored, quantifying the impact of the shear layer in the reflection process. This approach could enable more quantitative predictions of resonance phenomena in jets and other fluid systems.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3