Effects of a single spanwise surface wire on a free-ended circular cylinder undergoing vortex-induced vibration in the lower synchronization range

Author:

Vaziri E.ORCID,Ekmekci A.ORCID

Abstract

This experimental study investigated the control induced by a spanwise surface wire on a rigid circular cylinder undergoing vortex-induced vibration (VIV) under the conditions of low mass damping in the lower synchronization branch. Being motivated by the idea of VIV-based energy harvesting from ocean and river flows, this elastically mounted cylinder was immersed in a water channel, leaving a free end at its bottom spanwise end, while the free water surface bounded its top. The cylinder was constrained to vibrate in the cross-stream direction. The wire diameter was 6.25 % of the cylinder diameter. Experimental research was conducted by attaching this large-scale wire along the span of the cylinder at various angular positions ranging from 0° to 180° (with respect to the most upstream point of the cylinder) at a fixed Reynolds number of 104 (based on the cylinder diameter). Simultaneous to measuring the trajectory of the cylinder motion via a laser distance sensor, the instantaneous velocity field in the near wake of the cylinder was obtained using particle image velocimetry. Several VIV response categories were identified depending on the angular position of the wire, which led to the classification of distinct angular ranges for the wire application. Associated with the structural vibrations in these categories, different vortex-formation modes induced by the wire were revealed. For specific wire positions, decreases of up to 98 % and increases of up to 102 % were identified in the oscillation amplitude of the cylinder compared with the amplitude of the clean cylinder under similar conditions.

Funder

Ontario Ministry of Research, Innovation and Science

Natural Sciences and Engineering Research Council of Canada

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference46 articles.

1. Feng, C.C. 1968 The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders. Master's thesis, University of British Columbia, Vancouver, BC, Canada.

2. Prediction of vortex-induced vibration response by employing controlled motion

3. Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale

4. Effects of a geometrical surface disturbance on flow past a circular cylinder: a large-scale spanwise wire

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3