Coherence of unsteady wake of periodically plunging airfoil

Author:

Turhan BurakORCID,Wang ZhijinORCID,Gursul IsmetORCID

Abstract

We present an experimental investigation of the flow structure in the near wake of a NACA0012 airfoil plunging sinusoidally at a chord Reynolds number of Re = 20 000 and for a wide range of reduced frequency k and Strouhal number based on peak-to-peak amplitude St. Estimated mean thrust coefficients using the mean and fluctuating velocity fields confirm the St2 dependence as well as a significant effect of the reduced frequency for k ≤ 1. Generally, time-averaged flow quantities are better correlated with St than k in the range tested (k ≤ 3.14 and St ≤ 0.24). Analysis of the streamwise flow and cross-flow in the near wake using two-point cross-correlations and proper orthogonal decomposition reveals that the unsteady characteristics are even better correlated with St than the mean flow quantities. The percentage energy of the fundamental wake modes of the streamwise flow and the flapping mode of the cross-flow increases with increasing St, but at different rates in the drag-producing and thrust-producing wakes. There are similarities to the wake synchronisation behind oscillating bodies. The spanwise-averaged cross-correlation coefficient in the measurement domain grows linearly for small St (in drag-producing wakes), and is nearly constant at a high value for larger St (in thrust-producing wakes). Results show that the Strouhal number is the most important parameter that determines the degree of two-dimensionality of the wake, and suggest that spanwise vortices are quasi-two-dimensional for St ≥ 0.05 and x/c ≤ 4. The implications for experimental gust generators using oscillating airfoils are discussed.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference56 articles.

1. Unsteady Lift and Moment of a Periodically Plunging Airfoil

2. Oscillating foils of high propulsive efficiency

3. Generation of periodic gusts with a pitching and plunging airfoil

4. Airfoil Theory for Non-Uniform Motion

5. Gao, A. , Sherwin, S.J. & Cantwell, C.D. 2020 Three-dimensional instabilities of vortices shed from a plunging wing: computations. In Bulletin of the American Physical Society, The 73rd Annual Meeting of the APS Division of Fluid Dynamics (APS DFD 2020), 22–24 November 2020, virtual meeting.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3