Leading-edge vortex dynamics on plunging airfoils and wings

Author:

Son O.ORCID,Gao A.-K.ORCID,Gursul I.ORCID,Cantwell C.D.ORCID,Wang Z.ORCID,Sherwin S.J.ORCID

Abstract

The vortex dynamics of leading-edge vortices on plunging high-aspect-ratio (AR = 10) wings and airfoils were investigated by means of volumetric velocity measurements, numerical simulations and stability analysis to understand the deformation of the leading-edge vortex filament and spanwise instabilities. The vortex filaments on both the wing and airfoil exhibit spanwise waves, but with different origins. The presence of a wing-tip causes the leg of the vortex to remain attached to the wing upper surface, while the initial deformation of the filament near the wing tip resembles a helical vortex. The essential features can be modelled as the deformation of an initially L-shaped semi-infinite vortex column. In contrast, the instability of the vortices is well captured by the instability of counter-rotating vortex pairs, which are formed either by the trailing-edge vortices or the secondary vortices rolled-up from the wing surface. The wavelengths observed in the experiments and simulations are in agreement with the stability analysis of counter-rotating vortex pairs of unequal strength.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3