Internal shear layers in librating spherical shells: the case of periodic characteristic paths

Author:

He JiyangORCID,Favier BenjaminORCID,Rieutord MichelORCID,Le Dizès StéphaneORCID

Abstract

Internal shear layers generated by the longitudinal libration of the inner core in a spherical shell rotating at a rate $\varOmega ^*$ are analysed asymptotically and numerically. The forcing frequency is chosen as $\sqrt {2}\varOmega ^*$ such that the layers issued from the inner core at the critical latitude in the form of concentrated conical beams draw a simple rectangular pattern in meridional cross-sections. The asymptotic structure of the internal shear layers is described by extending the self-similar solution known for open domains to closed domains where reflections on the boundaries occur. The periodic ray path ensures that the beams remain localised around it. Asymptotic solutions for both the main beam along the critical line and the weaker secondary beam perpendicular to it are obtained. The asymptotic predictions are compared with direct numerical results obtained for Ekman numbers as low as $E=10^{-10}$ . The agreement between the asymptotic predictions and numerical results improves as the Ekman number decreases. The asymptotic scalings in $E^{1/12}$ and $E^{1/4}$ for the amplitudes of the main and secondary beams, respectively, are recovered numerically. Since the self-similar solution is singular on the axis, a new local asymptotic solution is derived close to the axis and is also validated numerically. This study demonstrates that, in the limit of vanishing Ekman numbers and for particular frequencies, the main features of the flow generated by a librating inner core are obtained by propagating through the spherical shell the self-similar solution generated by the singularity at the critical latitude on the inner core.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3