Mechanisms of wake asymmetry and secondary structures behind low aspect-ratio wall-mounted prisms

Author:

Goswami ShubhamORCID,Hemmati ArmanORCID

Abstract

The wake of a wall-mounted finite prism is numerically studied and characterized with an aspect ratio (height-to-width) of $1$ and varying depth ratios (length to width) of between $0.016$ and $4$ at Reynolds numbers of 50–500. The prism is immersed in a laminar boundary layer. The minimum depth ratio considered here accounts for the special case of a wall-mounted very thin prism (similar to a flat plate), which is used to establish the mechanism and evolution of the wake associated with free-end effects and the shear-layer dynamics in small aspect-ratio prisms. The onset of an unsteady wake behind a very thin prism at a Reynolds number of $200$ is characterized by symmetric shedding of hairpin-like vortices. A unique asymmetric wake pattern appears at lower depth ratios starting at a Reynolds number of 250, which transitions to an symmetric wake with increasing depth ratio. The threshold depth ratio for this symmetric transition increases with Reynolds number. The asymmetric wake results from alternate shear-layer peel-off from either side of the prism, which itself is attributed to the out-of-phase shedding of tip vortices at a lower Strouhal number ( $St_{sh}/2$ ) that interact with the detaching side shear layers. Alternate shedding of tip vortices form secondary vortex structures that are fed by the excess vorticity resulting from shear-layer detachment from either side of the prism. Increasing the depth ratio leads to simultaneous shedding of the tip vortices, which restores the commonly observed wake symmetric patterns. Thus, we identify and characterize the formation and interaction mechanisms of symmetric and asymmetric wakes during the transition process with increasing Reynolds number for different depth-ratio prisms.

Funder

Alberta Innovates

Natural Sciences and Engineering Research Council of Canada

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3