Approach towards local isotropy in statistically stationary turbulent shear flows

Author:

Tang S.L.ORCID,Antonia R.A.,Djenidi L.ORCID

Abstract

We analyse the approach towards local isotropy in statistically stationary turbulent shear flows using the transport equations for the fourth-order moments of the velocity derivative. It is found that terms of these equations representing the large-scale contribution associated with the uniform mean velocity gradient gradually decrease as the Taylor microscale Reynolds number $Re_\lambda$ increases, and finally disappear when $Re_\lambda$ is sufficiently large. This gradual weakening of the large-scale effect is accompanied by a gradual approach towards local isotropy of the small-scale motion. The rate at which local isotropy is approached depends on the weakening of the large-scale forcing, which is controlled by the magnitude of the non-dimensional velocity shear parameter $S^*$ ( $\equiv \overline {u_1^2}({{\partial {{\bar U}_1}}}/{{\partial {x_2}}})/{\bar {\varepsilon }_{iso}}$ , where $\bar {\varepsilon }_{iso}$ is the isotropic mean turbulent energy dissipation rate, $\overline {u_1^2}$ is the streamwise velocity variance, and ${\partial {{\bar U}_1}/\partial {x_2}}$ is the uniform mean velocity gradient in the transverse direction). In particular, we show that the approach towards local isotropy can be recast in the form $C\, Re_\lambda ^{-1}$ , where $C$ is the product of $S^*$ and a ratio of transverse-to-streamwise velocity derivative variances. This is consistent with the behaviour of the normalized third-order moments of transverse velocity derivatives. With the further use of the transport equations for the eighth- and twelfth-order velocity derivative moments, it is found that the even moments of transverse velocity derivatives can significantly affect the rate at which local isotropy is approached, especially for higher orders.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3