Cross-flow oscillations of a circular cylinder with mechanically coupled rotation

Author:

Nitti A.ORCID,De Cillis G.ORCID,de Tullio M.D.ORCID

Abstract

Flow-induced vibrations (FIV) of an elastically mounted circular cylinder are investigated by means of two-dimensional simulations. A mechanical coupling between cross-flow translation and rotation provides a single degree-of-freedom system in which the coupled rotational oscillations affect the fluid–structure dynamics. The structural response of this system is investigated exploring the design space spanned by reduced velocity, coupling radius and phase density ratio. The kinematic coupling introduces the rotation-induced shear layer modifications, as well as an equivalent inertia effect connected to the coupling force. Such a computational campaign is carried out by means of direct numerical simulations with immersed boundary forcing at a Reynolds number equal to 100. The investigated system exhibits the wake-body synchronisation features typical of lock-in for non-rotating cylinders. However, the kinematic coupling provides a novel FIV scenario, in which the oscillation amplitude is magnified in the locked configurations with respect to the forced rotation case. Furthermore, it is found that there a significant widening of the reduced velocity domain where the lock-in condition takes place. In view of the proposed analyses, it is determined that the coupled rotation guarantees the phase alignment between lift and displacement necessary to sustain the lock-in condition, making the oscillation amplitude grow indefinitely with the reduced velocity. This is inherently achieved due to the rotational shear layer and the added mass contribution, which prevent the exact match between oscillation frequency and system natural frequency in vacuum. The outcomes of this study might potentially lead to an innovative water energy harvester offering larger power outputs and extended optimal operating regions.

Funder

ItalianMinistry of University and Scientific Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3