A physics-based description and modelling of the wall-pressure fluctuations on a serrated trailing edge

Author:

Lima Pereira Lourenço TércioORCID,Avallone FrancescoORCID,Ragni DanieleORCID,Scarano FulvioORCID

Abstract

A physical description of the flow mechanisms that govern the distribution of the wall-pressure fluctuations over the surface of a serrated trailing edge is proposed. Three main mechanisms that define the variation of turbulent pressure fluctuations across the serrated edge are discussed and semi-empirical models are formulated accordingly. It is shown that the intensity of the wall-pressure fluctuations increases at the tips under the effect of an increased convective velocity as a result of sidewise momentum diffusion. Furthermore, the change of impedance across the edge causes a local reduction of the pressure fluctuations in the vicinity of the trailing edge. Finally, aerodynamic loading over the serrations due to the non-symmetric flow created at different angles of attack establishes secondary flow patterns that induce higher wall-pressure fluctuations over the serration edges. The latter effect is present only for serrations under high aerodynamic loading, while the former ones are observed under any conditions. Semi-empirical models are formulated for predicting the variation of the wall-pressure fluctuations over the serration surface based on the three physical mechanisms described. These models are calibrated and compared against experiments conducted on a symmetric airfoil model at high Reynolds numbers.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3