Data-driven kinematics-consistent model-order reduction of fluid–structure interaction problems: application to deformable microcapsules in a Stokes flow

Author:

Dupont ClaireORCID,De Vuyst FlorianORCID,Salsac Anne-VirginieORCID

Abstract

In this paper, we present a generic approach of a dynamical data-driven model-order reduction technique for three-dimensional fluid–structure interaction problems. A low-order continuous linear differential system is identified from snapshot solutions of a high-fidelity solver. The reduced-order model uses different ingredients, such as proper orthogonal decomposition, dynamic mode decomposition and Tikhonov-based robust identification techniques. An interpolation method is used to predict the capsule dynamics for any values of the governing non-dimensional parameters that are not in the training database. Then a dynamical system is built from the predicted solution. Numerical evidence shows the ability of the reduced model to predict the time evolution of the capsule deformation from its initial state, whatever the parameter values. Accuracy and stability properties of the resulting low-order dynamical system are analysed numerically. The numerical experiments show very good agreement, measured in terms of modified Hausdorff distance between capsule solutions of the full-order and low-order models, in the case of both confined and unconfined flows. This work is a first milestone to move towards real-time simulation of fluid–structure problems, which can be extended to nonlinear low-order systems to account for strong material and flow nonlinearities. It is a valuable innovation tool for rapid design and for the development of innovative devices.

Funder

FP7 Ideas: European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3