Amplitude modulation in particle-laden atmospheric surface layers

Author:

Liu HongyouORCID,He XiboORCID,Zheng XiaojingORCID

Abstract

Particle effects on the amplitude modulation are investigated in this study based on observational data with various mass loading acquired from long-term measurements of aeolian sandstorms in high-Reynolds-number ($Re_{\tau }\sim O(10^6)$) near-neutral atmospheric surface layers. In both particle-laden and unladen flows, in addition to the positive top–down modulation behaviour in the logarithmic region, a significant modulation effect that exists for some specific motions is also found for the single-point amplitude modulation. The most energetic turbulent motions exhibit the strongest modulation effect, and the modulating signals do not change with the small-scale motions being modulated. In particle-laden flows, the length of the most energetic structure is almost constant, thus the scales of the modulating signal and carrier signal are hardly affected by particles. However, the addition of particles changes the distribution of energy between multi-scale turbulent motions. The kinetic energy of the large-scale component is less enhanced than the total kinetic energy by particles. This leads to a reduced energy proportion of the large-scale component and an augmented one of the small-scale component. Moreover, the particles produce a large damping in the degree of the amplitude modulation and move down the positions of the modulating signals and carrier signals corresponding to the strongest inter-layer modulation, but the damping is weakened with the wall-normal distance due to the decreased mass loading. This study may provide a more general insight into the modulation mechanism between multi-scale turbulent motions and the effect of particles on turbulence.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3