The lift force on deformable and freely moving bubbles in linear shear flows

Author:

Hidman NiklasORCID,Ström HenrikORCID,Sasic SrdjanORCID,Sardina GaetanoORCID

Abstract

This paper provides a comprehensive explanation for the lift force acting on a freely deformable bubble rising in a linear shear flow and examines how the lift force scales with the undisturbed shear rate in cases governed by different lift force mechanisms. Four distinct flow mechanisms are identified from previous studies, and the associated bubble-induced vorticity dynamics are outlined. We provide a theoretical framework to qualitatively explain the lift force acting on a bubble in terms of moments of the bubble-induced vorticity. We support our theoretical framework with three-dimensional multiphase direct numerical simulations to illustrate how the vorticity dynamics associated with the four mechanisms generate the lift force. These findings provide a comprehensive explanation for the behaviour of the lift force in a wide range of relevant governing parameters. Additionally, our simulation results show how differently the lift force scales with the shear rate, depending on the dominating lift force mechanism. These results indicate that the shear rate should, in general, be accounted for in highly viscous flows (low Galilei numbers) or at significant bubble deformations (moderate-to-high Eötvös numbers) when modelling the lift force coefficient.

Funder

Vetenskapsrådet

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3