Abstract
This paper provides a comprehensive explanation for the lift force acting on a freely deformable bubble rising in a linear shear flow and examines how the lift force scales with the undisturbed shear rate in cases governed by different lift force mechanisms. Four distinct flow mechanisms are identified from previous studies, and the associated bubble-induced vorticity dynamics are outlined. We provide a theoretical framework to qualitatively explain the lift force acting on a bubble in terms of moments of the bubble-induced vorticity. We support our theoretical framework with three-dimensional multiphase direct numerical simulations to illustrate how the vorticity dynamics associated with the four mechanisms generate the lift force. These findings provide a comprehensive explanation for the behaviour of the lift force in a wide range of relevant governing parameters. Additionally, our simulation results show how differently the lift force scales with the shear rate, depending on the dominating lift force mechanism. These results indicate that the shear rate should, in general, be accounted for in highly viscous flows (low Galilei numbers) or at significant bubble deformations (moderate-to-high Eötvös numbers) when modelling the lift force coefficient.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献