Transient growth analysis of hypersonic flow over an elliptic cone

Author:

Quintanilha HelioORCID,Paredes PedroORCID,Hanifi ArdeshirORCID,Theofilis VassilisORCID

Abstract

Non-modal linear stability analysis results are presented for hypersonic flow over an elliptic cone with an aspect ratio of two at zero angle of attack, completing earlier modal instability analysis of flow around the same geometry. The theoretical framework to perform transient growth analysis of compressible flows on a generalized two-dimensional frame of reference is developed for the first time and is then applied to solve the initial-value problem governing non-modal linear instability on planes perpendicular to the cone axis, taken at successive streamwise locations along the elliptic cone. Parameter ranges examined here are chosen so as to model flight of the Hypersonic International Flight Research Experimentation 5 (HIFiRE-5) test geometry at altitudes of 21 km and 33 km, corresponding to Mach numbers 7.45 and 8.05 and unit Reynolds numbers $Re' = 1.07\times 10^7$ and $1.89\times 10^6$ , respectively. Results obtained indicate that the significance of the non-modal growth for laminar–turbulent transition increases with increasing flight altitude (decreasing Reynolds number). At a given set of flow parameters, transient growth is stronger in the vicinity of the tip of the cone and in azimuthal locations away from both of the minor (centreline) and major (attachment line) axes of the cone. Linear optimal disturbances calculated at conditions of maximal transient growth are found to peak in the crossflow region of the elliptic cone. These structures are elongated along the streamwise spatial direction, while being periodic along the spanwise direction with periodicity lengths of the same order of magnitude as the well-known structures identified as crossflow vortices in both experiments and simulations.

Funder

Air Force Office of Scientific Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3