Natural convection in vertical enclosures with conjugate boundary conditions

Author:

Solano TomasORCID,Ordonez Juan C.ORCID,Shoele KouroshORCID

Abstract

A numerical investigation and reduced-order modelling of natural convection in a cavity with differentially heated sidewalls is discussed. The effect of conjugate boundary conditions on the cavity's heat transfer and natural flow circulation with varying aspect ratios and Rayleigh numbers is examined. Validation of the canonical differentially heated cavity reveals that a modification to the definition of the Rayleigh number (Ra) is required to reconcile the $Nu\sim Ra^{1/4}$ scaling (where Nu is the Nusselt number) and validity of previously proposed correlations for the heat transfer in vertical enclosures. Dynamic mode decomposition is used to uncover the underlying time-dependent flow structures and the results are compared with stability bifurcation studies in the literature. A flow mode previously associated with smaller aspect ratio cavities is identified as the unstable mode for a larger aspect ratio of 4. The effect of conjugate boundary conditions is scaled based on the ratio of the internal and external boundary layers, wherein higher external Reynolds numbers aid in the heat transfer as the Nusselt number approaches the isothermal limit. A reduced-order theoretical model is proposed to predict the Nusselt number for the conjugate boundary conditions. The performance of conjugate boundary conditions is connected to the flow stability, with the parallel-flow configuration acting in a destabilizing manner while the counterflow configuration has a stabilizing effect and results in the highest heat transfer. We also found that relatively large heat transfer can be achieved with substantially lower external actuation with intermediate aspect ratios, translating to less power in practice.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3