A homogenization approach for buoyancy-induced flows over micro-textured vertical surfaces

Author:

Ahmed Essam NabilORCID,Bottaro AlessandroORCID,Tanda GiovanniORCID

Abstract

Asymptotic homogenization is employed to formulate upscaled effective boundary conditions at a smooth virtual surface for a natural-convection flow over a periodically roughened vertical wall, to bypass the expensive numerical resolution of flow and temperature fields near and within wall corrugations. Microscale problems are found by expanding near-wall variables in terms of a small parameter $\epsilon$ , the ratio between the microscopic and the macroscopic length scales. The expressions of the upscaled velocity and temperature boundary conditions are provided up to second-order accuracy in $\epsilon$ . The case of transverse square ribs is considered as a representative example. The classical Navier-slip condition for the streamwise and the spanwise velocity components is modified at second order by the gradient of the normal stress and the time derivative of the shear stress. The streamwise slip velocity is additionally corrected by a buoyancy term at first order and a temperature-gradient term at second order. The normal velocity at the virtual surface appears only as a second-order transpiration condition. A Robin-like condition for the temperature is found, where the wall temperature is corrected with a temperature-gradient term representing thermal slip. The accuracy levels and the applicability range of the effective conditions to mimic the macroscopic flow behaviour are investigated under laminar flow conditions, in comparison with results of full feature-resolving simulations. A formal validity limit for the approximation is sought in terms of a single accuracy criterion ( $C$ ), which combines the effects of the Grashof number and the ribs’ density. The introduced model is further tested on different rib geometries.

Funder

The Italian Ministry of University and Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3