Compressibility effects on statistics and coherent structures of compressible turbulent mixing layers

Author:

Wang XiaoningORCID,Wang JianchunORCID,Chen Shiyi

Abstract

The effects of compressibility on the statistics and coherent structures of a temporally developing mixing layer are studied using numerical simulations at convective Mach numbers ranging from $M_c=0.2$ to $1.8$ and at Taylor Reynolds numbers up to 290. As the convective Mach number increases, the streamwise dissipation becomes more effective to suppress the turbulent kinetic energy. At $M_c=1.8$ , the streamwise dissipation increases much faster than the other two components in the transition region, even larger than pressure–strain redistribution, correlating with the streamwise elongated vortical structures at a higher level of compressibility. We confirm the existence of the large-scale high- and low-speed structures in the mixing layers, which accompany the spanwise Kelvin–Helmholtz rollers at low convective Mach number and dominate the mixing layer at higher convective Mach number. Conditional statistics demonstrate that the large-scale low-speed structures are lifted upwards by a pair of counter-rotating quasi-streamwise rollers flanking the structures. The small-scale vortical structures have an apparent preference for clustering into the top of the low-speed regions, which is directly associated with high-shearing motions on top of the low-speed structures. The high-speed structures statistically exhibit central symmetry with the low-speed structures. The statistics and dynamics of large-scale high- and low-speed structures in the compressible mixing layers resemble those in the outer region of the turbulent boundary layers, which reveals the universality of the large-scale structures in free shear and wall-bounded turbulence. A conceptual model is introduced for the large-scale high- and low-speed structures in turbulent mixing layers.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3