Linear instability and resonance effects in large-scale opposition flow control

Author:

Guseva AnnaORCID,Jiménez JavierORCID

Abstract

Opposition flow control is a robust strategy that has been proved effective in turbulent wall-bounded flows. Its conventional set-up consists of measuring wall-normal velocity in the buffer layer and opposing it at the wall. This work explores the possibility of implementing this strategy with a detection plane in the logarithmic layer, where control could be feasible experimentally. We apply control on a channel flow at $Re_\tau = 932$ , only on the eddies with relatively large wavelengths ( $\lambda / h > 0.1$ ). Similarly to the buffer layer opposition control, our control strategy results in a virtual-wall effect for the wall-normal velocity, creating a minimum in its intensity. However, it also induces a large response in the streamwise velocity and Reynolds stresses near the wall, with a substantial drag increase. When the phase of the control lags with respect to the detection plane, spanwise-homogeneous rollers are observed near the channel wall. We show that they are a result of a linear instability. In contrast, when the control leads with respect to the detection plane, this instability is inactive and oblique waves are observed. Their wall-normal profiles can be predicted linearly as a response of the turbulent channel flow to a forcing with the advection velocity of the detection plane. The linearity, governing the flow, opens a possibility to affect large scales of the flow in a controlled manner, when enhanced turbulence intensity or mixing is desired.

Funder

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3