Abstract
We study the kinematics, dynamics and flow fields generated by an oscillating, compliant membrane hydrofoil extracting energy from a uniform water stream at a chord-based Reynolds number
$Re \approx 3 \times 10^4$
. Hydrodynamic forces during the foil's motion cause the membrane to dynamically morph its shape, effectively increasing the camber during the oscillation cycle. The membrane's deflection is modelled using the Young–Laplace equation, with pressure term approximated from thin-airfoil theory. Simultaneous tracking of the membrane deformation and the surrounding flow field using laser profiling and particle image velocimetry, respectively, reveals the role of dynamic cambering in stabilizing the leading-edge vortices on the membrane. In this regime of operation, we obtain up to 160 % higher power extraction when compared to a rigid, symmetric hydrofoil. The present work provides a demonstration of how passive compliance of soft materials interacting with fluids may be exploited in tidal and fluvial energy extraction.
Funder
US Army/Natick Soldier Systems Center
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献