On the physical nature of the turbulent/turbulent interface

Author:

Kankanwadi Krishna S.ORCID,Buxton Oliver R.H.ORCID

Abstract

The existence of a turbulent/turbulent interface (TTI) has recently been verified in the far wake of a circular cylinder exposed to free-stream turbulence (Kankanwadi & Buxton, J. Fluid Mech., vol. 905, 2020, p. A35). This study aims to understand the physics within the TTI. The wake boundary, approximately 40 diameters downstream of a circular cylinder subjected to grid-generated turbulence, was investigated through simultaneous cinematographic, stereoscopic particle image velocimetry and planar laser induced fluorescence experiments. With no grid placed upstream of the cylinder, the behaviour of the resultant interface, our closest approximation to a turbulent/non-turbulent interface, exactly matched what is observed in existing literature. When background turbulence is present, viscous action is no longer the only method by which enstrophy is transported to the background fluid, unlike for turbulent/non-turbulent interfaces. The presence of rotational fluid on both sides of the TTI allows the vorticity stretching term of the enstrophy budget equation to be the dominant actor in this process. The role of viscosity within a TTI is greatly diminished as the vorticity stretching term takes over responsibilities for enstrophy production. The turbulent strain rate normal to the TTI was found to be enhanced in the interfacial region. Decomposing the vorticity stretching term into components aligned with the three principal strain-rate directions, it was found that the term most aligned with the interface-normal direction contributed to the largest share of enstrophy production. This indicates that better ‘organised’ vorticity on the wake side of the interface yields the enstrophy amplification leading to the previously discovered enstrophy jump across the TTI by Kankanwadi & Buxton (J. Fluid Mech., vol. 905, 2020, p. A35).

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3