Hydrodynamics of an inertial squirmer and squirmer dumbbell in a tube

Author:

Ouyang ZhenyuORCID,Lin Zhaowu,Yu ZhaoshengORCID,Lin JianzhongORCID,Phan-Thien Nhan

Abstract

We study the hydrodynamics of a spherical and dumbbell-shaped microswimmer in a tube. Combined with a squirmer model generating tangential surface waves for self-propulsion, a direct-forcing fictitious domain method is employed to simulate the swimming of the microswimmers. We perform the simulations by considering the variations of the swimming Reynolds numbers (Re), the blockage ratios (κ) and the relative distances (ds) between the squirmers of the dumbbell. The results show that the squirmer dumbbell weakens the inertia effects of the fluid more than an individual squirmer. The constrained tube can speed up an inertial pusher (propelled from the rear) and an inertia pusher dumbbell; a greater distance ds results in a slower speed of an inertial pusher dumbbell but a faster speed of an inertial puller (propelled from the front) dumbbell. We also illustrate the swimming stability of a puller (stable) and pusher (unstable) swimming in the tube at Re = 0. At a finite Re, we find that the inertia and the tube constraint competitively affect the swimming stability of the squirmers and squirmer dumbbells. The puller and puller dumbbells swimming in the tube become unstable with increasing Re, whereas an unstable–stable–unstable evolution is found for the pusher and pusher dumbbells. With increasing κ, the puller and puller dumbbells become stable while the pusher and pusher dumbbells become unstable. In addition, we find that a greater ds yields a higher hydrodynamic efficiency η of the inertial squirmer dumbbell.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3