Efficient global resolvent analysis via the one-way Navier–Stokes equations

Author:

Towne AaronORCID,Rigas GeorgiosORCID,Kamal Omar,Pickering EthanORCID,Colonius Tim

Abstract

Resolvent analysis is a powerful tool for modelling and analysing transitional and turbulent flows and, in particular, for approximating coherent flow structures. Despite recent algorithmic advances, computing resolvent modes for flows with more than one inhomogeneous spatial coordinate remains computationally expensive. In this paper we show how efficient and accurate approximations of resolvent modes can be obtained using a well-posed spatial marching method for flows that contain a slowly varying direction, i.e. one in which the mean flow changes gradually. First, we derive a well-posed and convergent one-way equation describing the downstream-travelling waves supported by the linearized Navier–Stokes equations. The method is based on a projection operator that isolates downstream-travelling waves. Integrating these one-way Navier–Stokes (OWNS) equations in the slowly varying direction, which requires significantly less CPU and memory resources than a direct solution of the linearized Navier–Stokes equations, approximates the action of the resolvent operator on a forcing vector. Second, this capability is leveraged to compute approximate resolvent modes using an adjoint-based optimization framework in which the forward and adjoint OWNS equations are marched in the downstream and upstream directions, respectively. This avoids the need to solve direct and adjoint globally discretized equations, therefore bypassing the main computational bottleneck of a typical global resolvent calculation. The method is demonstrated using the examples of a simple acoustics problem, a Mach 1.5 turbulent jet and a Mach 4.5 transitional zero-pressure-gradient flat-plate boundary layer. The optimal OWNS results are validated against corresponding global calculations, and the close agreement demonstrates the near-parabolic nature of these flows.

Funder

Office of Naval Research

Boeing

Natural Sciences and Engineering Research Council of Canada

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference74 articles.

1. Martini, E. , Cavalieri, A.V.G. , Jordan, P. & Lesshafft, L. 2019 Accurate frequency domain identification of ODEs with arbitrary signals. arXiv:1907.04787.

2. Hydrodynamic stability without eigenvalues;Trefethen;Science,1993

3. Boundary conditions for direct simulations of compressible viscous flows

4. Efficient computation of global resolvent modes

5. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3