Motion of a sphere in a viscous density stratified fluid

Author:

Varanasi Arun KumarORCID,Subramanian GaneshORCID

Abstract

We examine the translation of a sphere in a stratified ambient in the limit of small Reynolds numbers ( $Re \ll 1$ ) and viscous Richardson numbers ( $Ri_v \ll 1$ ); here, $Re = {\rho Ua}/{\mu }$ and $Ri_v = {\gamma a^3 g}/{\mu U}$ , with $a$ being the sphere radius, $U$ the translation speed, $\rho$ and $\mu$ the density and viscosity of the stratified ambient, $g$ the acceleration due to gravity, and $\gamma$ the density gradient characterizing the ambient stratification. In contrast to most earlier efforts, our study considers the convection-dominant limit corresponding to $Pe = {Ua}/{D} \gg 1$ , $D$ being the diffusivity of the stratifying agent. We characterize in detail the velocity and density fields around the particle in what we term the Stokes stratification regime, defined by $Re \ll Ri_v^{{1}/{3}} \ll 1$ , and corresponding to the dominance of buoyancy over inertial forces. Buoyancy forces associated with the perturbed stratification fundamentally alter the viscously dominated fluid motion at large distances of order the stratification screening length that scales as $a\,Ri_v^{-{1}/{3}}$ . The motion at these distances transforms from the familiar fore–aft symmetric Stokesian form to a fore–aft asymmetric pattern of recirculating cells with primarily horizontal motion within, except in the vicinity of the rear stagnation streamline. At larger distances, the motion is vanishingly small except within (a) an axisymmetric horizontal wake whose vertical extent grows as $O(r_t^{{2}/{5}})$ , $r_t$ being the distance in the plane perpendicular to translation, and (b) a buoyant reverse jet behind the particle that narrows as the inverse square root of distance downstream. As a result, for $Pe = \infty$ , the motion close to the rear stagnation streamline starts off pointing in the direction of translation, in the inner region, and decaying as the inverse of the downstream distance; the motion reverses beyond distance $1.15a\,Ri_v^{-{1}/{3}}$ , with the eventual reverse flow in the far-field buoyant jet again decaying as the inverse of the distance downstream. For large but finite $Pe$ , the narrowing jet is smeared out beyond a distance of $O(a\,Ri_v^{-{1}/{2}}\, Pe^{{1}/{2}})$ , leading to an exponential decay of the aforementioned reverse flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3