Inertial migration of red blood cells under a Newtonian fluid in a circular channel

Author:

Takeishi NaokiORCID,Yamashita Hiroshi,Omori ToshihiroORCID,Yokoyama NaotoORCID,Wada Shigeo,Sugihara-Seki MasakoORCID

Abstract

We present a numerical analysis of the lateral movement and equilibrium radial positions of red blood cells (RBCs) with major diameter 8  $\mathrm {\mu }$ m under a Newtonian fluid in a circular channel with 50  $\mathrm {\mu }$ m diameter. Each RBC, modelled as a biconcave capsule whose membrane satisfies strain-hardening characteristics, is simulated for different Reynolds numbers $Re$ and capillary numbers $Ca$ , the latter of which indicates the ratio of the fluid viscous force to the membrane elastic force. The effects of initial orientation angles and positions on the equilibrium radial position of an RBC centroid are also investigated. The numerical results show that depending on their initial orientations, RBCs have bistable flow modes, so-called rolling and tumbling motions. Most RBCs have a rolling motion. These stable modes are accompanied by different equilibrium radial positions, where tumbling RBCs are further away from the channel axis than rolling ones. The inertial migration of RBCs is achieved by alternating orientation angles, which are affected primarily by the initial orientation angles. Then the RBCs assume the aforementioned bistable modes during the migration, followed by further migration to the equilibrium radial position at much longer time periods. The power (or energy dissipation) associated with membrane deformations is introduced to quantify the state of membrane loads. The energy expenditures rely on stable flow modes, the equilibrium radial positions of RBC centroids, and the viscosity ratio between the internal and external fluids.

Funder

Japan Society for the Promotion of Science

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3