Sparsifying the resolvent forcing mode via gradient-based optimisation

Author:

Skene Calum S.ORCID,Yeh Chi-AnORCID,Schmid Peter J.ORCID,Taira KunihikoORCID

Abstract

We consider the use of sparsity-promoting norms in obtaining localised forcing structures from resolvent analysis. By formulating the optimal forcing problem as a Riemannian optimisation, we are able to maximise cost functionals whilst maintaining a unit-energy forcing. Taking the cost functional to be the energy norm of the driven response results in a traditional resolvent analysis and is solvable by a singular value decomposition (SVD). By modifying this cost functional with the $L_1$ -norm, we target spatially localised structures that provide an efficient amplification in the energy of the response. We showcase this optimisation procedure on two flows: plane Poiseuille flow at Reynolds number $Re=4000$ , and turbulent flow past a NACA 0012 aerofoil at $Re=23\,000$ . In both cases, the optimisation yields sparse forcing modes that maintain important features of the structures arising from an SVD in order to provide a gain in energy. These results showcase the benefits of utilising a sparsity-promoting resolvent formulation to uncover sparse forcings, specifically with a view to using them as actuation locations for flow control.

Funder

Army Research Office

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An invitation to resolvent analysis;Theoretical and Computational Fluid Dynamics;2024-08-19

2. Neural networks in feedback for flow analysis and control;Physical Review Fluids;2024-06-12

3. Feedback flow control on a plunging circular cylinder;Physics of Fluids;2024-04-01

4. Mesh-free hydrodynamic stability;Journal of Computational Physics;2024-04

5. Laminar Separation Control for Eppler 387 Airfoil Based on Resolvent Analysis;AIAA Journal;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3