Hydroacoustic analysis of a marine propeller using large-eddy simulation and acoustic analogy

Author:

Posa AntonioORCID,Broglia RiccardoORCID,Felli MarioORCID,Cianferra MartaORCID,Armenio VincenzoORCID

Abstract

The acoustic analogy is adopted to characterise the signature of a seven-bladed submarine propeller, relying on a high-fidelity large-eddy simulation, performed on a computational grid consisting of 840 million points. Results demonstrate that the nonlinear terms of the Ffowcs-Williams and Hawkings equation quickly become dominant moving away from the propeller along the direction of its wake development. While the linear terms experience a decay moving downstream, the nonlinear terms grow in the near wake, as a result of the development of wake instability. In particular, this growth affects frequencies lower than the blade frequency. Therefore, the acoustic signature of the propeller is mainly tonal in the near field only, due to the thickness and loading components of noise from the surface of the propeller and the periodic perturbation caused by its tip vortices. They develop instability at a faster rate, compared with the hub vortex, triggering the process of energy cascade towards higher frequencies and contributing in this way to broadband noise.

Funder

Office of Naval Research Global

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference69 articles.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3