Experimental investigation of three-dimensional modes in the wake of a rotationally oscillating cylinder

Author:

Bhattacharyya SoumarupORCID,Khan Izhar HussainORCID,Verma ShivamORCID,Kumar SanjayORCID,Poddar KamalORCID

Abstract

Three-dimensionalities in the wake of flow past a circular cylinder executing sinusoidal rotary oscillations about its axis is studied experimentally. The results of water tunnel experiments on a rotationally oscillating cylinder for Reynolds number of 250 with varying amplitude and forcing frequency are discussed. Qualitative studies using hydrogen bubble and laser-induced fluorescence flow visualisation techniques are performed. Observation made for oscillating amplitude, $\theta _{0} = {\rm \pi}/4$ and $\theta _{0}=3{\rm \pi} /4$ , and a low normalised forcing frequency, $FR$ , of 0.75 and 0.5, respectively, confirmed a mode having a spanwise non-dimensional wavelength of $\sim$ 1.8 which is also observed for a rotating cylinder. On increasing forcing frequency this mode disappears and a new mode with a bean-shaped structure and a much smaller spanwise normalised wavelength of $\sim$ 0.8 appears at an $FR$ of 1 and an oscillation amplitude of ${\rm \pi} /2$ . This mode remains almost stable until a forcing frequency of $FR=1.4$ . At higher forcing frequency, $FR=2.75$ , and oscillation amplitude of $3{\rm \pi} /4$ , a mode with cellular structure and a normalised spanwise wavelength of $\sim$ 1.6 is identified. The cells in this mode flatten up with increasing downstream distance and are shed alternately with respect to the adjacent cell. Certain combinations of forcing parameters resulted in a forced two-dimensionality of the wake. Quantitative studies using hot-wire measurements and particle image velocimetry confirm the presence of these modes and wake characteristics. Wake mode map in the forcing frequency and amplitude plane is presented showing regions of newly discovered modes and wake lock-on boundaries.

Funder

Aeronautics Research and Development Board

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3