The swelling and shrinking of spherical thermo-responsive hydrogels

Author:

Butler Matthew D.ORCID,Montenegro-Johnson Thomas D.ORCID

Abstract

Thermo-responsive hydrogels are a promising material for creating controllable actuators for use in micro-scale devices, since they expand and contract significantly (absorbing or expelling fluid) in response to relatively small temperature changes. Understanding such systems can be difficult because of the spatially and temporally varying properties of the gel, and the complex relationships between the fluid dynamics, elastic deformation of the gel and chemical interaction between the polymer and fluid. We address this using a poro-elastic model, considering the dynamics of a thermo-responsive spherical hydrogel after a sudden change in the temperature that should result in substantial swelling or shrinking. We focus on two model examples, with equilibrium parameters extracted from data in the literature. We find a range of qualitatively different behaviours when swelling and shrinking, including cases where swelling and shrinking happen smoothly from the edge, and other situations that result in the formation of an inwards-travelling spherical front that separates a core and shell with markedly different degrees of swelling. We then characterise when each of these scenarios is expected to occur. An approximate analytical form for the front dynamics is developed, with two levels of constant porosity, that well-approximates the numerical solutions. This system can be evolved forward in time, and is simpler to solve than the full numerics, allowing for more efficient predictions to be made, such as when deciding dosing strategies for drug-laden hydrogels.

Funder

Leverhulme Trust

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3