Modelling moving contact lines on inextensible elastic sheets in two dimensions

Author:

Yao Jin,Zhang Zhen,Ren WeiqingORCID

Abstract

Elastocapillarity has attracted increasing interest in recent years due to its important roles in many industrial applications. In this work, we derive a thermodynamically consistent continuum model for the dynamics of two immiscible fluids on a thin and inextensible elastic sheet in two dimensions. With the sheet being modelled by a deformable curve with the Wilmore energy and local inextensibility constraint, we derive a two-phase hydrodynamics model with the interfacial and boundary conditions consistent with the second law of thermodynamics. In particular, the boundary conditions on the sheet and at the moving contact line take the form of force balances involving the fluid stress, surface tensions, the sheet bending force and sheet tension, as well as friction forces arising from the slip of fluids on the sheet. The resulting model obeys an energy dissipation law. To demonstrate its capability of modelling complex elastocapillary interactions, we consider two applications: (1) the relaxation dynamics of a droplet on an elastic sheet and (2) the transport of a droplet driven by bendotaxis in a channel bounded by elastic sheets. Numerical solutions for the coupled fluid–sheet dynamics are obtained using the finite element method. The detailed information provided by the full hydrodynamics model allows us to better understand the dynamical processes as compared to other simplified models that were used in previous work.

Funder

National Natural Science Foundation of China

Ministry of Education - Singapore

Guangdong Provincial Key Laboratory Of Computational Science And Material Design

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3