Abstract
Statistically homogeneous flows obey exact kinematic relations. The Betchov homogeneity constraints (Betchov,J. Fluid Mech., vol. 1, 1956, pp. 497–504) for the average principal invariants of the velocity gradient are among the most well-known and extensively employed homogeneity relations. These homogeneity relations have far-reaching implications for the coupled dynamics of strain and vorticity, as well as for the turbulent energy cascade. Whether the Betchov homogeneity constraints are the only possible ones or whether additional homogeneity relations exist has not been proven yet. Here we show that the Betchov homogeneity constraints are the only homogeneity constraints for incompressible and statistically isotropic velocity gradient fields. Our analysis also applies to compressible/perceived velocity gradients, and it allows the derivation of homogeneity relations involving the velocity gradient and other dynamically relevant quantities, such as the pressure Hessian and viscous stresses.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献