Abstract
A drag correlation is established for laminar particle-laden flows, based on data from the interfaced-resolved direct numerical simulations (IR-DNS) of particle sedimentation in a periodic domain at density ratio ranging from 2 to 1000, particle concentration ranging from 0.59 % to 14.16 %, and particle Reynolds number below 132. Our drag decreases slightly with increasing density ratio when the other parameters are fixed. The drag correlation is then corrected to account for the turbulence effect by introducing the relative turbulent kinetic energy, from the IR-DNS data of the upward turbulent channel flows laden with the particles larger than the Kolmogorov length scale at relatively low particle volume fractions. A drift velocity model is developed to obtain the effective slip velocity from the interphase mean velocity difference for the vertical turbulent channel flow by considering the effects of particle inertia, particle concentration distribution and large-scale streamwise vortices.
Funder
National Natural Science Foundation of China
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献