Wall-bounded thermal turbulent convection driven by heat-releasing point particles

Author:

Du Yuhang,Yang YantaoORCID

Abstract

In this work we investigate the thermal convection driven by heat-releasing point particles. Three-dimensional direct numerical simulations are conducted for $1\times 10^7\le {\textit {Ra}} \le 1\times 10^{10}$ and $0.01\le {\textit {St}} \le 10$ , where the Rayleigh number ${\textit {Ra}}$ and Stokes number ${\textit {St}}$ measure the strengths of the heat releasing rate and the Stokes drag, respectively. A regime at intermediate Stokes numbers is identified with most particles accumulating into the top boundary layer region, while for other cases particles are constantly advected over the entire domain. For the latter state, the flow motions are stronger at the upper part of the domain. The thicknesses of both momentum and thermal boundary layers at the top plate follow the same scaling law with ${\textit {Ra}}$ and show minor dependences on ${\textit {St}}$ . The volume-averaged temperature and convective flux exhibit non-monotonic variations as ${\textit {St}}$ increases and reach their minimums at intermediate ${\textit {St}}$ . The fraction coefficient of heat flux, i.e. the ratio between the heat flux through the bottom plate and the total flux through both plates, shares the similar dependence on ${\textit {St}}$ as the convective flux. The relation between these scaling laws can be explained by using the global balance between the dissipation and convective flux. The scaling laws for the transition between different flow regimes are also proposed and agree with the numerical results. The preferential concentration of particles is observed for all cases and is strongest at intermediate Stokes numbers, for which multiscale clustering emerges with small clusters forming larger ones.

Funder

National Natural Science Foundation of China

Marine S&T Fund of Shandong Province

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3