Transition mechanisms in a boundary layer controlled by rotating wall-normal cylindrical roughness elements

Author:

Wu YongxiangORCID,Römer TristanORCID,Axtmann Gabriel,Rist UlrichORCID

Abstract

The transition to turbulence induced by counter-rotating wall-normal rotating cylindrical roughness pairs immersed within a laminar boundary layer on a flat plate is investigated with direct numerical simulations, dynamic mode decomposition (DMD) and perturbation kinetic energy (PKE) analysis. As long as the cylinder stub is rotating, the wake contains a steady dominating inner vortex (DIV) surrounded by a secondary inner vortex. Its circumferential velocity accelerates the fluid on one side of the cylinder and decelerates it on the other side. With low rotation speed, the perturbation is initiated by a combination of elliptical and centrifugal instabilities in the near wake. At medium rotation speeds, Taylor–Couette-like streamwise vortices are generated on the decelerated side, resulting in a protruding reverse-flow zone. Results from DMD analysis and corresponding PKE analysis reveal the unstable nature of the deceleration region and the wake. At the largest rotation speed investigated, the onset of perturbations is directly located on the decelerated side of the cylinder stubs, where a deceleration mechanism feeds the instability. In the near wake, the mechanism gradually changes to a pure centrifugal instability when the rotation speed increases. In the far wake, both elliptical and centrifugal instabilities fade away, and the streaky flow featuring a vigorous DIV is then only subject to inviscid inflectional instability.

Funder

Deutsche Forschungsgemeinschaft

China Scholarship Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3